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Abstract--Measurements of the deposition of 50, 90 and 150 #m droplets on the wall of a 5.08 era pipe 
are presented. The droplets were introduced from an orifice in the center of the pipe at approximately 
the same velocity as downward flowing air. The deposition rate is described by a diffusion model where 
the diffusion coefficient of the droplets is constant and the velocity profile is uniform. It is shown that 
special attention has to be paid to the formulation of the boundary condition at the wall. 

Key Words: deposition rate, droplets, turbulence, annular flow, dispersed flow, diffusion model 

I N T R O D U C T I O N  

Droplets entrained in air that flows turbulently in a vertical duct move randomly due to their 
interaction with the turbulent fluid. This paper is concerned with relating the rate of deposition 
of droplets on a wall to the turbulence properties of the droplets. 

The ability of droplets to follow the fluid turbulence is characterized by the reciprocal time 
constant 

3CDpr = - - [ u , [ ,  [1] 
4dppp 

where CD is the drag Coefficient, dp is the particle diameter and [ ur [ is the magnitude of the difference 
between the radial velocity components of the fluid and the particle. The product of 1//~ and the 
particle velocity may be thought of as a measure of the stopping distance of this particle if it were 
moving in a stagnant fluid. For a spherical particle small enough that Stokes' law is applicable, 

18#f 
= 2 , [2] 

drpp 
where #f is the air viscosity. 

The focus is on particles which are massive enough that their stopping distance is larger 
than the thickness of the viscous wall region; i.e. T+= u*2/vf[3 is >20. For such particles the 
non-homogeneity of the turbulence close to the wall is not important and, to a first approximation, 
the particle turbulence may be considered homogeneous. The applicability of a diffusion model, 
for which the turbulent diffusivity may be considered independent of its location in a cross-section 
of the pipe, is explored. The use of a diffusion model implies that the stopping distance is not equal 
to the pipe radius, so there is also an upper limit on z +. 

The system studied is the dispersion of droplets downstream of a source that is located at the 
center of the pipe. The droplets are assumed to collect on the wall of the pipe when they collide 
with it, so that the pipe wall is a perfect absorber. For situations involving molecular diffusion this 
would require that the concentration at the wall be zero. However, because the length scale 
characterizing the droplet motion, L, is so large a finite concentration exists at the wall, in the same 
way that a Knudsen flow has a finite relative velocity at the wall. 

This can be seen by using a radiation boundary condition at the wall, 

d C  r -R Tfr = V C ( R ) ,  [ 3 ]  

459 
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where V is the velocity with which droplets are carried to the wall. If % is represented as the product 
of V and characteristic length L then [3] may be rewritten as 

(oc  vc(R). VL\ ar },=. 

It can be seen that if L is very small (as is the case for molecular diffusion) and (~C/~R)R is finite, 
then C(R) = O. However, if L is of the order of the length scale characterizing ~C/~r, then C(R) 
is a finite number. 

A more informative representation of the wall boundary condition is obtained by noting that 
the mean number of particles per second per unit area that move toward the wall at radius R is 
given by 

jp(R) = C(R)(V,[ Vr)0)f  +, [4] 

where (1/',1Vr)0) is the conditionally averaged radial velocity, given that the radial velocity is 
positive, and f +  is the probability that the radial velocity is positive. The quantity Cf + can be 
interpreted as the number of particles per unit volume having positive radial velocity, and 
(V,[ V~)0) is their mean velocity. Therfore, C(R) in [3] should be replaced by C ( R ) f  + and V by 
(Vr] Vr)0) if the flux of wall-ward particles in [4] is equated to the flux of deposited particles on 
the r.h.s, of [3]. 

Two problems arise in the use of a diffusion model to describe droplet deposition: very large 
droplets (small fl) could be strongly influenced by their method of entry into the field or could have 
such large turbulence scales that a diffusion mechanism (characterized by a haphazard motion) 
is inappropriate. A theory to calculate the ratio of the particle and fluid diffusion coefficients, ep/¢r, 
and the ratio of the mean-square turbulent velocity fluctuations of the particle and the fluid, 
v2/u~, has not yet been firmly established. 

Because of these difficulties, experiments were initiated in this laboratory in which the turbulence 
characteristics of the droplets and deposition rates were measured with the same equipment. A 
continuous stream of droplets of uniform diameter was injected at the same velocity as the gas in 
order to have well-defined entry conditions. Initial measurements of deposition rates with 50, 90 
and 150/,m water droplets have been reported by Lee & Hanratty (1988). These reveal that a dry 
wall provides a better approximation of a completely absorbing boundary than a wet wall. A recent 
thesis by Lee (1987) reports on measurements of the turbulence properties of droplets of these sizes 
obtained with an axially-viewing photographic technique. This paper presents results on the rate 
of deposition of droplets for the same conditions and experimental equipment used in the 
turbulence studies of Lee. 

The chief motivation for this work is the understanding of the rate of deposition of droplets 
in a gas/liquid annular flow pattern. This rate process is usually represented by the first-order 
equation 

jp(R) = kD CB. [51 

Consequently, some discussion is presented at the end of the paper as to what a diffusion model 
would suggest regarding the dependence of the deposition constant, kD, on hydrodynamic variables 
for the experiment discussed in this paper. 

The use of a diffusional mechanism to explain particle deposition has been pursued by a number 
of researchers, starting with Friedlander & Johnstone (1957). Early work was mainly concerned 
with particles sufficiently small that the stopping distance is less than the thickness of the viscous 
wall region. The particle and fluid diffusivities were assumed to be equal and the chief differences 
appear to be in the formulation of the wall boundary condition. Friedlander & Johnstone (1957) 
assumed that C = 0 at a distance from the wall equal to the stopping distance. Davies (1966), Beal 
(1970) and Sehnel (1970) used the radiation boundary condition [3] at a distance from the wall equal 
to one stopping distance. Davies assumed the particle and fluid turbulent velocity fluctuations are 
equal, Beal assumed the particle turbulent velocity fluctuations at one stopping distance are the 
same as the fluid velocity fluctuations at the edge of the viscous wall region, and Sehnel developed 
an empirical relation for the particle velocity at one stopping distance. 
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The works of Hutchinson et al. (1971) and Ganic & Mastanaiah (1981) are closer to the interests 
of the present paper in that they focus on particles for which the stopping distance is larger than 
the thickness of the viscous wall region. Both developed relations for ep/el. Hutchinson et aL assume 
that C = 0 at the wall, while Ganic & Mastanaiah use the radiation boundary condition [3] at the 
edge of the viscous wall region. 

DESCRIPTION OF THE EXPERIMENTS 

The deposition results presented in this paper were obtained for the downward flow of air in 
a 5.08 cm pipe. Droplets of uniform size were injected through an orifice located at the center of 
the pipe, 60 pipe diameters from the inlet. The test sections were made of brass and were grounded 
to eliminate any buildup of electrostatic charge. Orifice diameters of 25.4, 50.8 and 76.2/~m were 
used to produce droplets with diameters of 50, 90 and 150/~m. 

Ink was added to the liquid forming the drops during deposition runs that lasted 15-20 min. 
Droplets adhered to the wall of the pipe and evaporated. At the termination of a run the nine 
sections of the pipe were disassembled and washed to determine the amount of ink that deposited. 

Detailed descriptions of the apparatus and of the techniques used in these deposition studies may 
be found in previously published articles (Vames & Hanratty 1988; Lee & Hanratty 1988). 

INTERPRETATION 

The interpretation of the results is simplified by representing the air velocity as a plug flow, by 
neglecting diffusion in a flow direction and by assuming the particle diffusivity does not depend 
on r. The differential equation describing the droplet concentration is 

OC(r,t) =ep(t)[~2Co~2, t ) l OC(r , t ) l  
Ot ~ r - Or " [6] 

Here, t is the time the particles at a fixed distance from the injector, z, have been in the field. 
It is assumed that the thickness of the viscous wall region where the mean velocity is varying 

is very small compared to the pipe radius so that boundary condition [3] can be applied at the pipe 
wall. In order to implement this boundary condition it is necessary to relate V to the turbulence 
properties of the droplets. This is done by making the simplifying assumption that V = (Vrl Vr )0)  
is proportional to the r.m.s, velocity (v~)~/2: 

V = Z (/.)~)1/2. [71 

If, for exampl~__the probability density function of v, is a joint normal distribution with zero mean, 
then A = x/2/zc. 

Boundary condition [3] becomes 

OC 
- ep ~r = A (v2) I/2 Cf  + [81 

at r = R, i f f  + is the fraction of the particles moving toward the wall. 
The solution of [6] for a point source at r = 0, t = 0 is given as 

N Jo(rOt,) - a  2 ep dt [9] 
C(r, t) = UpnR: ,=l J~o(R~,) + J~(Rot,) exp 

where N is the total number of droplets injected per unit time, Up is the mean droplet axial velocity 
and C is the number of droplets per unit volume. The eigenvalues, 0q, are given by the equation 

ep ~tJ I (R~t) - m J0 (R~t) = 0. [ 101 

The fraction of the droplets deposited is obtained from [9] using the equation 

l f0 ( o c  )2rtRUpdt. [11] F=~ - ~  R 
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For the experiments reported in this paper the droplets were injected approximately at the fluid 
velocity, and the free-fall velocity is small compared to the fluid velocity. Therefore, Up was set 
equal to Ur. Furthermore, the measurements of the turbulence characteristics of the drops by Lee 
(1987) and by Vames & Hanratty (1988) suggest that in the region where the deposition is occurring 
the droplet dispersion has reached its long-time behavior. For example, Vames & Hanratty found 
a linear X 2 vs t relation at 5 pipe diameters from the injector. Figure 4 shows that deposition does 
not start until about 12 pipe diameters. Therefore, the following approximation is made: 

fo 'ep ~- epo~t, [12] dt 

where ep~ is the value of ep at large times. 
Figure 1 shows a calculation of the fraction deposited using [9]-[11]. The values of 

ep = 13.5 cm2/s, (v2) ~/2 = 46.6 cm/s a n d f  + = 0.5, used in these calculations, would be applicable to 
the runs with 50/~m droplets at Re = 52,000 (Lee 1987). The solid curve in this figure corresponds 
to the same calculation using C ( R )  = 0 as a boundary condition (B.C.). The use of this boundary 
condition produces a quite different prediction of the fraction deposited. 

Figures 2 and 3 show that the calculated fraction deposited is sensitive to the selection of (v,2) 1/2 
and ep. As would be expected, F increases with increases in these two parameters. 

RESULTS 

Measurements of the fraction deposited as a function the distance downstream from the injector, 
expressed as a number of pipe diameters, are given in figure 4. In order to make a comparison with 
the diffusion model these deposition results are replotted in figure 5 as a function of time for 
conditions where Lee (1987) obtained measurements of the turbulence characteristics of the drops. 

The time, t, was calculated from the equation 

z = fo Up dt, [13] 

where Up is obtained by a procedure outlined by Morsi & Alexander (1972). This requires the 
measurement of the velocity of the particles at time zero and the solution of the equation 

dUp 
CDPr ( V r -  Up)Ap, [14] 

mp dt = 4 .  

where mp is the mass of the droplet, Ap is its projected area and CD is the drag coefficient. 
The measurements of v 2 by Lee (1987) are far more accurate than his measurements of ep. 

Therefore, the comparisons with calculations based on [6] and [8] and the assumption o f f  + = 0.5, 
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Figure l. Comparison of predictions of the fraction deposited using the radiation boundary condition [3] 
and C(R) = O. 
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Figure 2. Effect of the droplet r.m.s, radial intensity on the fraction deposited. 

m 

shown in figure 5, were done by using measured v~, given in table 1, and by selecting a value of 
ep~o that gave the best fit. These ep~ are listed in column 7 of table 1. They are compared (in column 
10), with the diffusivity of fluid particles obtained from the equation 

ef = 0.037, [15] 
u*2R 

given by Vames & Hanratty (1988) as a best fit to presently available data. 
The values of ~p/ef for the 50/am droplets are seen to be approximately equal to or greater than 

unity. This is consistent with the turbulence measurements presented by Lee (1987) and with the 
theoretical analysis of Reeks (1977). The values of 8p/el obtained for the 90 #m droplets are just 
slightly less than unity, while the values of ep for the 150/am droplets are roughly one-half of el. 
Estimates of ep obtained by Lee (1987) from his optical studies of droplet motion are also given 
in column 8 of table 1. The sample sizes used by Lee were not large enough to obtain accurate 
measurements of ~p, so the agreement can be considered satisfactory. 

It is of interest to examine the sensitivity of the comparison of the diffusion model to the use 
of radiation boundary condition [3]. This is done in figure 6. The dashed curve uses the boundary 
condition [3] while the solid curve uses the boundary condition C = 0 at the wall. It is noted that 
a smaller value of ~p~ is required to fit the deposition results when the concentration is assumed 
zero at the wall. The radiation boundary condition gives a slightly better fit to the measured 
deposition rates but, more importantly, requires values of ~p~ in agreement with point-source 
diffusion measurements. 
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Figure 3. Effect of the droplet eddy diffusivity on the fraction deposited. 
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Figure 5. Comparison of the experimental data with calculations based on a diffusion model. 

I N T E R P R E T A T I O N  O F  T H E  D E P O S I T I O N  C O N S T A N T  

As indicated in the introduction, usual practice is to represent deposition rates in terms of a 
deposition constant, kD, defined by [5]. It is of interest to examine the implications from diffusional 
model regarding the interpretation of measurements of kD presented in this paper. 

Since the diffusivity, %, is not varying with radial position one would expect a diffuse 
concentration profile for a fully-developed condition, similar to what would be found for 
laminar mass transfer or heat transfer. Thus a mass transfer coefficient, k,, can be defined by 
the equation 

j p ( R  ) = k, [CB --  C(R)], [16] 

Table 1. Turbulent diffusion coefficient of the droplets 

dp N ~w 2 1'2 ' L~ T 

(I am) /~TLf Re (cm/s) (cm/s) (cm) (cm2/s) (cm2/s) (cm2/s) ~f (~2) ''2 

50 0.74 36,000 50.5 32.6 0.20 9.2 9.15 1.00 0.21 
50 0.61 52,000 70.1 46.6 0.30 13.5 12.6 1.07 0.15 

90 0.29 36,000 50.5 23.9 0.44 8.2 8.4 9.15 0.90 0.45 
90 0.24 52,000 70.1 27.7 0.50 10.5 13.4 12.6 0.83 0.33 

150 0.124 36,000 50.5 18.4 0.78 4.1 5.9 9.15 0.45 1.18 
150 0.092 52,000 70.1 21.2 0.94 6.5 8.9 12.6 0.52 0.87 

"From an empirical fit to the data in figure 5. 
bLee (1987). 
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where Cs is the bulk concentration and C(R) is the concentration close to the pipe wall. A Nusselt 
number characterizing the diffusion process is defined as 

2R 
Nu = kl - - .  [17] 

8p 

For a fully-developed mass transfer process, Nu would be expected to be roughly constant (=  6.8). 
A second rate constant, k2, can be defined by relating jp(R) to C(R), 

where, according to [8], 

jp(R) = k2C(R), [18] 

k2 ~-f+A(v~) '/2 at R. [19] 

The elimination of C(R) from [16] by using [18] and the comparison of  the result with [5] yields 

1 1 1 

kv ki + ~" [20] 

Thus the deposition resistance, 1/ko, is the sum of resistances 1/k I and l/k2, associated with the 
diffusion process and the free-flight to the wall. The recognition that k D may be interpreted in this 
way could help in explaining the large scatter of measurements of kD/U* for large v+. 

It is of interest to apply this concept to cases for which the relative velocity between the droplets 
and the fluid is small, (Up - Ur)/(u2) 1/2 < 0.5. Then, according to the theory of Reeks (1977) and 
the recent measurements of Vames & Hanratty (1988) and Lee (1987), the particle diffusivity, ep, 
is approximately equal to the fluid diffusivity, el, and the mean-square of the particle turbulent 
velocity fluctuations can be approximated by 

= ur 0.7 + flTLF}' [21] 

where "t'Lf is the fluid Lagrangian time constant equal to ef/(u2). Turbulence measurements in a pipe 
[reviewed by Vames & Hanratty (1988)] give 

~f = 0.037, [22] 
u*2R 

and 

(u2,) I/2 ~- 0.9u* at r ~ R [23] 

,'t- L f u * 
- -  ~= 0 .046 . [24] 
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Figure 6. Influence of the boundary condition at the wall on the calculation of the fraction deposited. 
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By substituting [17], [19] and [22]-[24] into [20] the following relation is obtained: 

1 1 1 
~- [25] 

kD (v,2)'l 2 ~p 
u--- ~ 0.9A f ÷  0.037 Nu--  

(~)1I~ ~ 

For the case of ep/er,~, 1, Nu = 6 .8 , f  + = 1/2, A = x / ~  and ~ given by [211, a maximum value 
of kD/U*= 0.15 is estimated, and diffusion contributes 59% of the resistance. For this situation 
of small (Up-Ur)/(u2) I/2, kD/u* will decrease with decreasing ~LF because of decreases in 

2 I/2 2 I/2 (vr) /(u,) . For example, if this ratio equals 0.4 then ko/u*= 0.092, and diffusion contributes 
36% of the resistance. For situations in which (Up - Ur)/(u2,) ~/2 > 0.5, one can expect lower kD/u*, 
since ep ,~ el, as a result of the crossing of trajectories. 

For a fully-developed dispersion of droplets, rate equation [5] gives the following result for the 
fraction of droplets at z0 that are deposited by some distance z if kD is constant: 

4ko 
In(1 - F) = - - -  (z - z0). [26] 

2RUt 

Equation [26] has been found to fit the measurements of F obtained in this study if z0 is taken as 
the location where droplets first start to deposit on the wall (see Vames & Hanratty 1988). Values 
of kD obtained in this way are represented in column 4 of table 2 and in figure 7. The two solid 
lines in the figure are correlations suggested by McCoy & Hanratty (1977). The horizontal line is 
represented by 

kD 0.17. [27] 
14" 

It is of interest to note that this is close to the maximum kD/u*= 0.15 estimated above for a 
fully-developed dispersed flow. 

The upper bound of deposition measurements for annular flows are close to the estimated 
kD/u* = 0.15. However, the deposition measurements presented in this paper have an upper bound 
of kD/U*= 0.10. This can be explained because the droplet concentration distributions are quite 
different. 

Figure 8 shows Nusselt numbers calculated from a diffusion model for a point source at the pipe 
center. It is noted that the Nusselt number reaches a fully-developed value of 6.8 at large times. 
However, the experiments are characterized by smaller contact times for which the Nusselt number 
varies. The assumption of constant kD is not correct, so [26] is not strictly valid. The values of kD 
presented in column 4 of table 2 are an average characterizing the measured deposition. 

Despite this difficulty it is useful to interpret measured kD/u* with [25] for fully-developed fields 
with constant Nusselt number. To do this, 8p/Sf was assumed equal to unity for the 50 and 90 #m 
drops and f +  was taken as 0.5. The 150#m drops had large relative velocities compared to 
the turbulence and, from the results in table 1, ~p/Sf was taken as 0.5. Values of the Nusselt 
number characterizing the deposition process (shown in column 11 of table 2) were estimated from 

v,/u, (columns 8 and 9 of figure 8. Equations [24] and [21] were used to calculate ~Lr and 2 2 
table 2). Approximate agreement is noted between the kD calculated with [25] and measurements 
(columns 4 and 14 of table 2). Calculated values of k~ and k2 are also listed in columns 13 and 
10 of table 2. It is noted that both resistances, l/kl and 1/k2, should be considered. 

DISCUSSION 

A diffusion model has been shown to describe the deposition of droplets whose stopping distance 
is greater than the thickness of the viscous wall layer. The importance of using a radiation boundary 
condition at the wall is demonstrated. 

A critical problem in the use of the radiation boundary condition is the specification of the 
fraction of the droplets moving toward the wall. In all of the calculations presented in this paper 



a,
 

0~
m

) 

50
 

50
 

50
 

50
 

50
 

9O
 

9O
 

15
0 

15
0 

15
0 

kD
 

(e
ra

/s
) 

2.
40

 
2.

98
 

4.
30

 
6.

80
 

7.
38

 
3.

50
 

4.
21

 
1.

25
 

2.
44

 
1.

52
 

U
* 

(e
m

/s)
 

29
.6

 
40

.0
 

48
.0

 
69

.8
 

87
.2

 
50

.8
 

69
.0

 
54

.6
 

69
.0

 
88

.2
 

*=
 

c 2 o O
 g, .i-
. o Q
 

o'
) 

c G
 E
 

1
0

0
 

10
-1

 

1
0

-2
 

iO
-3

 

1
0

-4
 

1
0

-5
 1
0

-2
 

""
°"

 
. 

rk
 

V
 F

or
m

er
 (

19
70

) 
D

ro
pl

et
s 

in
je

ct
ed

 f
ro

m
 o

 t
ub

e 
/ 

• 
C

ou
si

ns
 I~

 H
ow

in
 (

19
6S

) 
D

ro
pl

et
s 

cr
lm

to
d 

In
 a

nn
ul

ar
 

/
/

 
flo

w
 (

D
ry

 
W

al
l) 

/ 
rl

 C
ou

si
ns

 8
 H

e~
itt

 0
96

8)
 O

ro
pl

et
l¢

 c
re

at
ed

 in
 o

n~
ul

or
 

/ 
flo

w
 (

W
et

 W
al

l) 
, 

I 
S

C
h0

71
(1

98
8)

A
cI

u0
1 

on
rlu

lo
r 

flo
w

 d
ep

os
iti

on
 r

ot
es

 

, 
,,,

,..
I 

1,
,,,

.,I
 

, 
,.,

,,,
I 

,,,
,.,

,I 
~,

,,,
,,,

I 
j 

...
.. 

,,I 
,.,

,,,
,,I

 
,,

,,
. 

10
 -I

 
tO

 0 
tO

 I 
10

 2
 

10
 3 

10
 4 

10
 5

 
10

 6
 

D
im

en
si

on
le

ss
 P

ar
tic

le
 R

el
ax

at
io

n 
T

im
e,

 
T 

+ 

F
ig

ur
e 

7.
 C

om
pa

ri
so

n 
o

f 
ka

/u
* 

fr
om

 d
if

fe
re

nt
 e

xp
er

im
en

ts
. 

T
ab

le
 2

. 
C

om
pa

ri
so

n 
o

f 
m

ea
su

re
m

en
ts

 o
f 

kD
/U

* 
w

it
h 

ca
lc

ul
at

io
ns

 b
as

ed
 o

n 
[2

5]
 w

it
h 

f=
 

0.
5 

k2
 

(m
ea

s.
) 

(e
ra

/s
) 

(s
- 

l)
 

u*
 

#~
f 

\~
) 

u ~ 
N

u
 

0.
08

 
50

0 
13

5 
23

.2
00

 
1

.0
6

0
 

0.
77

6 
0.

27
90

 
4.

85
 

0.
08

 
70

0 
13

5 
1

7
.1

4
0

 
0.

78
90

 
0.

72
8 

0.
26

1 
4.

85
 

0.
09

 
93

8 
13

5 
1

4
.2

9
0

 
0.

65
70

 
0.

69
6 

0.
25

00
 

4.
85

 
0.

10
 

13
30

 
13

5 
9.

82
0 

0.
45

20
 

0.
62

6 
0.

22
40

 
4.

85
 

0.
09

 
17

30
 

13
5 

7.
86

0 
0.

36
20

 
0.

58
4 

0.
20

90
 

4.
85

 
0.

07
 

92
4 

52
 

5
.2

0
0

 
0.

23
9 

0.
50

5 
0.

18
10

 
4.

4 
0.

06
 

13
20

 
52

 
3.

83
0 

0.
17

60
 

0.
44

8 
0.

16
10

 
4.

4 
0.

02
 

10
06

 
21

 
1.

95
4 

0.
08

99
 

0.
33

7 
0,

12
10

 
2,

8 
0.

04
 

13
00

 
21

 
1.

54
6 

0
.0

7
1

1
 

0.
30

4 
0.

10
90

 
2.

8 
0.

02
 

17
48

 
21

 
1.

20
9 

0.
05

6 
0.

27
1 

0.
97

4 
2.

8 

~p
 

~f
 1 1 1 1 ! I.O

 
1,

0 
0.

5 
0.

5 
0.

5 

k 
i 

1/
* 

0.
17

9 
0.

17
9 

0.
17

9 
0.

17
9 

0.
17

9 
O

. 1
63

0 
O

. 1
63

0 
0.

05
18

 
0.

05
18

 
0.

05
18

 

kD
 

(c
al
c.
) 

0.
10
9 

0.
10

6 
0.

10
4 

0.
10

0 
0.

09
6 

0.
08

6 
0.

08
1 

0.
03

6 
0.

03
5 

0.
03

4 

,.]
 

> O
 

O
 

m
 

,..]
 

O
 

Z M
 



468 M . M .  LEE et aL 

I O [  I I I I I [ [ I I 

2 
~,61- / / / / /  / 

~L / / / / /  / 
b [ /1'/// /" SIZE: (MICRONS) RE: 

. k  I///1 / - - 5 0  380o0 
I ' i / i / /  . . . .  50 ~=0oo 
t- / , U  / . . . . .  - -  99o ° 52.ooo '0o° 

2 k ////,// / - - ' - -  150 3 6 0 0 0  
, t - / l ( , /  - i 1 5 o  52.000 

01 ~ t / / /  I I I I I I I I 
0 .0  0.1 0 .2  0 .3  0 . 4  0.5 0 . 6  0 . 7  0 .8  0 .9  1.0 

TIME(S) 

Figure 8. Nusselt number of the droplets originating from a centrally located source as a function of time. 

it was assumed t h a t f  + = 0.5 and A f  + = 1/x//~. Estimates o f f  + are presented in table 7.3 of the 
thesis by Lee (1987). These give values of 0.56-0.68 for the 50 #xm droplets, 0.70-0.75 for the 90/xm 
droplets and 0.64-0.70 for the 150/xm droplets. The use of these values o f f  + (rather than 0.5) 
would require values of ep which are 6-15% smaller than those listed in table 1, in order to fit the 
deposition measurements. A value o f f  + = 0.5 was used in the calculations because the sample sizes 
used by Lee were not large enough to make the estimates o f f  + completely reliable. Lee (1987) 
also tested the accuracy of calculating V from (v:,) in by using a Gaussian distribution; as is shown 
in table 7.3 of his thesis this introduces no significant errors. 

A more general question about the applicability of the diffusion model is whether the scale of 
the equipment is large enough compared to the scale characterizing the motion of  the drops. It 
is difficult to give an answer, because it could depend on the method by which the droplets enter 
the field. However, some criteria can be suggested for the simple system considered in this paper. 
A Lagrangian scale of particle motion can be defined as Lp ---- ep/(V2r) 1/2. The requirement of a 
haphazard motion of the particles in the neighborhood of the wall necessitates that Lp/R be small. 
This can be formulated by the following equation, as can be seen by substituting [22] for ef and 
[23] for (u2)1/2: 

Lp = 0.082 % (u2)U2 
--R er (V~r) I/: ~I 1. [28] 

For particles with very high inertia (say fl'~Lf '~  0.02), Lp/R is close to unity and the particles 
depositing on the wall are approximated by a free-flight from the center. 

McCoy & Hanratty (1979) have treated the limiting behavior of unidirectional dispersion for 
which f + = 1. If  the distribution function describing X~(t) is Gaussian and if (again) a plug flow 
approximation is made, the concentration of particles at the wall is given by 

( R2) N -- 2-"~p c(R) = ~ exp 

with 

[29] 

The fraction of droplets deposited over a distance z from the injector is 

F = exp - , [31] 

where X~ is given by [30]. In this limit the Gaussian concentration profiles downstream of a point 
source reflect the distribution of  particle velocities. Because of this the droplets with larger velocities 

.-5 
v,  _2 [30] x ~  = v ~ t  ~ = ~ . 
Up 
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deposit first and calculated values of k2 = RD/C(R) given by McCoy & Hanratty decrease with 
increasing z. 

It is not clear how to treat cases which are intermediate between the diffusion model and 
unidirectional dispersion. It is possible that the measurements with the 150/~m droplets fall in this 
category. The smaller values of ep/ef used to characterize their deposition could result from an 
inadequate time to reach a fully haphazard motion, as much as to the crossing of trajectories 
phenomenon. 
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